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LETTER TO THE EDITOR 

The hardening transition in swollen lamellar phases 
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Parc Valrose, 06034 Nice Ctdex, France 

Received 5 December 1988 

Abstract. We reanalyse the competition between two leading anharmonic corrections, due 
to rotational invariance, to the harmonic description of lyotropic smectic liquid crystals. We 
show that these corrections have an opposite effect on the bending rigidity and imply the 
existence of a ‘hardening’ transition in lamellar phases. For swollen lyotropic lamellar phases 
for which the entropic steric interaction gives the dominant contribution to the compression 
modulus, this transition can be reached simply by swelling the system and separates a 
‘soft’ phase at small swelling from a ‘rigid’ phase at large swelling. This could explain the 
extraordinary stability of hyperswollen lamellar phases and their extremely thin scattering 
Bragg peaks. Suggestions for experimental observation of this transition are presented. 

In fluid membranes, the molecules can freely and rapidly adjust to shape changes of the 
membrane. In this case, the membrane deformation is described only in terms of a 
surface tension y and a bending elastic modulus k,. y is often very small and can even 
vanish (Brochard et a1 1976) and the membrane shape is uniquely controlled by k,. Due 
to the smallness of the bending energy associated with long-wavelength deformations, 
large transverse thermal fluctuations (undulations) take place. This feature explains, 
among other properties, the flicker phenomenon of red blood cells (Brochard and 
Lennon 1975) and the stability of swollen lamellar lyotropic phases (Larche et a1 1986), 
and is involved in stability of microemulsions (Safran et aZ1986, 1987). 

Recently, it was recognised (Helfrich 1985, 1987, Peliti and Leibler 1985, Sornette 
1985, Foerster 1987) that non-linear coupling between undulation modes, due to 
rotational invariance, leads to a decrease of the effective bending rigidity of the mem- 
brane at large-scale r according to 

k , ( r )  = k:[ l  - (akgT/4nk:) log(r/a)] (1) 
where k: is the microscopic value of the bending rigidity at the microscopic scale a = 
2 nm and a = 1 (Helfrich 1985, 1987, Foerster 1987) or 3 (Peliti and Leibler 1985, 
Sornette 1985) depending upon the approach. As a consequence, the correlation of 
the normals n(r) to the membrane appears to decrease exponentially, instead of only 
algebraically, (de Gennes and Taupin 1982) (if one neglects the nbn-linear coupling) 
with a typical persistence length 

Ek -- a exp(4nk:/akB T ) .  (2) 
Futhermore, two-dimensional membranes in a three-dimensional space appear to be at 
their lower critical dimension. Correspondingly, suggestions have been made concerning 
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the possible existence of a crumpling transition in the presence of long-range forces (for 
example mediated by phonons) between distant parts of the same membrane (Peliti and 
Leibler 1985, Nelson and Peliti 1987, David et a1 1987, Kantor and Nelson 1987, David 
and Guitter 1988). This crumpling transition would separate a ‘low-temperature’ rigid 
phase ( Ek + + m) from a ‘high-temperature’ crumpled phase corresponding to the situa- 
tion found in the absence of the long-range force. 

The purpose of this Letter is to point out that, when a steric constraint hinders the 
spontaneous single membrane undulations, long-range forces also appear between 
distant parts of a samefluid membrane that are not mediated by phonons but rather by 
inter-membrane coupling. As a consequence, a second anharmonic correction intrinsic 
to smectics, and also due to rotational invariance, must be considered, which competes 
with the non-linear coupling between undulation modes leading to (1). This term has 
been considered by Grinstein and Pelcovitz (1981, 1982) and leads to a breakdown of 
the hydrodynamic description of smectics at large scales. We show that these two 
corrections (the one that appears for isolated membranes and leads to equation ( l ) ,  and 
the other that is intrinsic to smectics) have an opposite effect on the bending rigidity and 
imply the existence of a ‘hardening’ transition in lamellar phases. For a swollen lyotropic 
lamellar phase for which the entropic steric interaction gives the dominant contribution 
to the compression modulus, this transition can be reached simply by swelling the system 
and separates a ‘soft’ phase at small swelling from a ‘rigid’ phase at large swelling. This 
could explain the extraordinary stability of hyperswollen lamellar phases and their 
extremely thin scattering Bragg peaks (Larche et a1 1986). 

The harmonic Hamiltonian for a smectic reads (de Gennes 1974) 

f = J d3x [ t (k , / ( z ) )V2u2 + i B ( d u / d ~ ) ~ ]  (3) 

where the operator Vis the transverse gradient (i.e. in the plane of the membranes), the 
z axis is perpendicular to the membranes and u = z - ( z )  denotes the displacement along 
z of the point ( x ,  y )  of the zth membrane. 

We now consider the limiting case of an isolated membrane. For a single membrane 
with vanishing surface tension, the deformation free energy is again given by equation 
(3) with B = 0. Let us define the local normal to the membrane n = (n, = -&/ax; ny = 
-du/dy;  n, = 1). For small fluctuations 6n = (n,; ny) ,  the orientational fluctuations 
e2(r) = (16n(r) - 6n(O)I2) diverge logarithmically; in the harmonic approximation 
(Parodi 1984) S2(r)  = (kB T/nk:)  log(r/a), where r is the distance along the membrane. 

Non-linear coupling between undulation modes comes from the requirement that 
expression (3) (with B = 0) should be invariant with respect to global rotations. Such 
symmetry considerations lead us to replace V2u by the complete expression of the mean 
curvature (Helfrich 1973) 

c = div[Vu(l + I V U ~ ~ ) - ~ ’ ~ ]  -- V2u(l - &/Vu/2  + . . .) + , , . (4) 
The anharmonic corrections of (4) lead to the renormalisation of k, by fluctuations 
according to (1) (Helfrich 1985, 1987, Peliti and Leibler 1985, Sornette 1985, Foerster 
1987). k, decreases at large scales meaning that it is easier to bend a crumpled surface 
than a flat one. 

We now consider the case of amultilamellar phase, for which B # 0. This corresponds 
to length scales that are large compared to the inter-membrane spacing (2). The harmonic 
deformation energy (3) leads to the following form for the orientational fluctuations 
(Parodi 1984) 

e2(r )  = (kB ~ / 2 n k 3 ( 1  + log(A(z)/ .7~~~)] asr-, +m ( 5 )  
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for a stack of membranes of mean separation (2). A. is the so-called penetration length 
given by A2 = k, /B(z)  where B is the elastic compression modulus of the smectic liquid 
crystal formed by the stack of lamellae. B takes into account the interactions between 
adjacent membranes which introduce a macroscopic compression elastic modulus in the 
direction z normal to the membranes. The fact that @(r) is finite as r+ +m demonstrates 
that membrane interactions lead to a phase of planar membranes at large scale. 

In this case, rotational invariance brings another correction to expression (3). Since 
a global rotation of the lamellar phase must not change the energy, du/dz must be 
replaced by (de Gennes 1974, Ribotta and Durand 1977, Sornette 1987a, b) 

au/az-+ (aula2 - tlVul2). ( 6 )  
The influence of this anharmonic correction has been discussed in Grinstein and 
Pelcovitz (1981, 1982) and leads to a renormalisation by fluctuations of both k, and B ,  
which become size dependent for length scales larger than the inter-membrane spacing 
(2). Theeffect of theinter-membranecoupling can be heuristically understood asfollows. 
The anharmonic term ( 6 )  is such that a tensile stress can be relaxed by membrane 
undulations. This is at the basis of the so-called undulation instability studied in smectics 
(Ribotta and Durand 1977, Sornette 1987a, b). In the presence of thermal fluctuations, 
one therefore expects that B decreases at large scales due to the coupling between 
tension and undulation (this is indeed found in Grinstein and Pelcovitz (1981, 1982)) 
and over the same time k,  increases since additional undulation deformations must 
appear in order to relax a tensile or compressive stress. Note that the results presented 
in Grinstein and Pelcovitz (1981, 1982) only considered the anharmonic correction (6) 
and neglected the correction in (4 ) .  

We now consider the competition between the two non-linear corrections ( 4 )  and 
(6). It is clear that a consistent treatment of the anharmonic coupling induced from 
global rotational invariance in lamellar phases must include both correction terms since 
rotational invariance must apply both at the single membrane scale and as a whole when 
considering their interactions. Furthermore, both contributions appear in the full non- 
harmonic Hamiltonian and it turns out that they are of the same order of magnitude, for 
example in swollen lamellar phases. Within a perturbative treatment, one can add the 
contribution of each term calculated separately within the field-theoretical renor- 
malisation group of Peliti and Leibler (1985), Sornette (1985) and Grinstein and Pelcovitz 
(1981,1982) to obtain the overall effect of both corrections ( 4 )  and (6) on the curvature 
rigidity. This is due to the fact that the two non-linear corrections to the harmonic smectic 
Hamiltonian appear, to leading order, as additive terms in the writing of the total non- 
linear smectic Hamiltonian. We thus obtain 

k , ( r )  = k:{l + [ ( B ( ~ ) ~ / 6 4 k : ) l / ~  - ct’](kB T/4nk:)  log(r/a)}. (7) 
The term ( B ( ~ ) ~ / 6 4 k : ) ~ / ~ ( k ,  T /4nk: )  log(r/a) on the RHS of (7) is obtained simply by 
linearising equation (3.15) of Grinstein and Pelcovitz (1982). Equation (7) is valid to 
leading order in kgT/4nkc. It is similar to (1) but with (Y replaced by 

- (Y = (Y - ( B ( ~ ) ~ / 6 4 k , ) l / ~ .  (8) 
Expression (7) is valid at length scales r larger than (2). It shows the influence of the 
inter-membrane coupling via the term B which may change from a positive to a 
negative value. This suggests the existence of a ‘hardening’ transition separating a ‘soft’ 
phase at g > 0 (for which k, decreases at large scales) from a ‘rigid’ phase at a_ < 0 (for 
which k,  increases at large scales). This transition is distinct from the crumpling transition 



1908 Letter to the Editor 

occurring for single membranes since both the ‘soft’ and ‘rigid’ phases present quasi- 
long-range translational order and long-range orientational order with algebraic decay 
of the density correlation function (with, however, different exponents in the two 
phases). 

Of the two corrections (4) and (6), only (6) couples transverse and normal 
deformations. Therefore, the anharmonic correction (4) does not enter the renor- 
malisation of B by fluctuations and we may use directly the result of Grinstein and 
Pelcovitz (1981, 1982), for example at fixed qz:  

B(r) = Bo[l - (/3”2/16~)(kB T/kc)2 log(r/a)] (9) 
which does not exhibit any remarkable behaviour. 

An interesting case occurs in swollen lamellar phases where ( z )  becomes much larger 
than the molecular size a -- 2 nm. Then, experiments show that, for neutral membranes, 
the Helfrich steric interaction (Helfrich 1978, Sornette and Ostrowsky 1984, Janke and 
Kleinert 1987) may become the dominant contribution to the effective inter-membrane 
interaction leading to a finite value of B. In this case, B is given by (Helfrich 1978, 
Sornette and Ostrowsky 1984, Janke and Kleinert 1987) 

B = P[(kB T)2/k , ] (z>-3  (10) 
with P in the range 0.44-1.38 (/3 = 9x2/64 in Helfrich 1978). This means that adjacent 
membranes are coupled only via the excluded volume constraint exerted on long- 
wavelength undulations. The steric interaction is felt essentially by modes of in-plane 
wavevector q less than a cut-off q(z )  given by (Sornette 1986) 

q ( Z ) - l  E (k,/kBT)1’2(Z). (11) 
q(z)-l  sets the scale separating two regimes. 

Firstly, for modes such that q > q(z ) ,  i.e. at scales less than q(z)-’, the steric con- 
straint is absent and the constraint modulus B(q)  exerted on these modes is vanishingly 
small. Therefore, the problem is that of isolated membranes and the bending modulus 
k,(q) should be renormalised by fluctuations according to (l), since the membranes are 
essentially free and do not feel each other at these scales. At the scale r - q(z)- l ,  k,  is 
reduced to 

k,* = k!{l - (akB T/47Ck!) hg[(kc/kB T)”2(Z)/a]}. (12) 
Secondly, at scales larger than q(z)-’ -- (k,/kBT)1/2(z), steric interactions between 

adjacent membranes become important and decrease the amplitude of modes with 
wavevectors q < q(z ) .  Then, the effect of the competition between the two non-linear 
corrections (4) and (6) leads to (7) but with a value of the ‘bare’ bending rigidity changed 
into k,* , since k,* sets the scale of the bending rigidity in the absence of steric constraint. 

Equation (12) shows that the effective bending rigidity controlling the steric inter- 
action can be significantly smaller than k: and this leads to an enhanced steric interaction 
according to (10) (Sornette 1986). Then, the renormalisation of the bending rigidity 
reads 

k C ( r )  = k,* [l - ( ~ ( k g  T/4?t.k,*) log(q(z)r)]. 

- a((z))  = a - kB T/3”2/8k,* ((2)) 

(13) 

(14) 

Due to the particular form of B ,  g takes a simple expression given by 

where g is defined in (8). Equation (14) is valid at scales r > q(z)- l .  Note that if one 



Letter to the Editor 1909 

neglects the z-dependence of k z  , g is a pure number (Leibler and Lipowsky 1987). 

at 
Equation (13) with (14) shows the existence of a ‘hardening’ transition which occurs 
= 0 ,  i.e. k,* / k B  T = P’/2/8a. Using expression (14), this occurs for 

(Z), /a = (k:/kB T)-’ l2  exp{4n[(k:/kB T )  - P ’ / 2 / 8 ~ ] / a } .  (15) 
Let us take a fixed membrane composition such that k : / k B T  is fixed. For ( z )  < (z),, 
- a > 0 and for ( z )  > (z),, g < 0. Therefore, by swelling, a lamellar system can cross the 
transition point and go from a phase in which the membranes are ‘soft’ (k ,  decreases 
with scale) to a phase where the membranes are ‘rigid’ (k ,  increases with scale). The fact 
that the ‘rigid’ phase is reached by swelling could be an important factor alternative to 
the electrostatic explanation (Larche et a1 1986, Safinya et a1 1986) for explaining the 
observed stability of hyperswollen lamellar phases, which present a stronger smectic 
order for larger lamellae separation (2 )  (Helfrich 1985,1987). Precise measurements of 
k: are difficult to obtain (Meunier et a1 1987). Recent work (Larche et a1 1986, Safinya 
et a1 1986) on swollen lamellar phases shows that k: is in the range of kBT. Taking 
typically k:/kBT = 1, we find (z),/a = 43 (with a = 2 nm, this leads to ( z ) ,  = 86 nm) 
which is well in the range explored in recent experiments (Larche et a1 1986). These 
numerical estimates are, however, extremely sensitive to the value of k:/kB T.  

Note that the hardening transition can also be detected in x-ray, neutron or light- 
scattering experiments that measure the exponent X ,  of the algebraic decay of cor- 
relations characteristic of the quasi-long-range translational order in lamellar 
phases (Callie 1972). This exponent X ,  = kBTqi/8n(k,B/(Z))112 (m = 1 , 2 ,  . . .) 
can be obtained by analysing the power-law scattering intensity peak S(q,) - 
(4, - q m ) - ( 2 - X m ) .  Reporting the scale dependence of k, and B given by (7) and (9) in 
X ,  yields to leading order 

Xm(r )  ~ { 1 +  [ ( a / 8 n ) ( k B ~ / k c * )  + ( P 1 ’ 2 / 3 2 n ) ( k B ~ / k , *  )’I log(q(z)r)} (16) 

where X ;  is the unrenormalised correlation exponent. X ,  increases or decreases 
with the transverse scale r according to the sign of (g /8n)(kBT/k ,*)  + 
( P ’ / 2 / 3 2 ~ ) ( k B  T / k , * ) 2 .  Considering the second term in (kBT/k,)2 as a correction to the 
first one, the ‘hardening’ transition should appear in the change of behaviour of X ,  at 
large scales: (i) the ‘soft’ phase with > 0 corresponds toX, which increases with scale; 
(ii) the ‘rigid’ phase with < 0 corresponds to X ,  which decreases with scale. Suppose 
that Xz=l < 2 but X k = 2  2 2 so that only the first Bragg peak exists at small swelling. 
As the lamellar phase is swollen, one eventually crosses the ‘hardening’ transition and 
enters into the rigid phase for which g < 0. Let us take typically ( 2 )  - q(z)-’ - 0.1 pm 
(for k, /kBT-  l ) ,  r - 10pm and E= -2 .  This yields, using (16), X,=,  = 0.6Xtm2 = 
1.2 for X:=2 2: 2. Thus, the second Bragg peak may appear as the lamellar phase is 
swollen and undergoes the hardening transition. This prediction is in agreement with 
the observations of Larche et a1 (1986). 

Several regimes for a swollen lyotropic smectic liquid crystal have been discussed, 
which depend on the relative size of r11 with respect to q(z)-’. At scales rll> q(z ) - ’ ,  the 
competition between two anharmonic corrections to the smectic free energy shows the 
existence of a ‘hardening’ transition for each lamella which can be reached by swelling 
the system. It separates a ‘soft’ phase at small swelling from a ‘rigid’ phase at large 
swelling. This paradoxical result (one could intuitively expect that larger swelling implies 
lower order) stems from the fact that a larger swelling implies a smaller effective bending 
rigidity k,* at the crossover scale q(z)-’ and therefore a larger stabilising steric interaction. 
Note that the present analysis relies on perturbative corrections valid rigorously for 
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large kE/kB T.  Our use of these results in the regime k: /kB T - 1 can only be taken as an 
indication of the results of a more general analysis which is unfortunately out of reach 
of present techniques. An ultimate bound for k : / k B T  is given by the geometrical 
condition ( z )  < gk, for a lamellar phase to be defined. This is verified for (z) ,  if 
kE/kB T > 0.7. 

These ideas have an interesting theoretical implication for the unbinding transition 
predicted for lamellar systems and studied recently within functional renormalisation 
groups (Lipowsky and Leibler 1986, Sornette 1987a, b). Developing a renormalisation 
scheme placing on the same footing the effect of undulations on the membrane 
curvature rigidity k,  and on the membrane interactions remains a stimulating challenge 
for future works. 

I am grateful to D Chatenay, D Langevin, J Meunier and N Ostrowsky for useful 
comments. This is the opportunity to thank R Zana for his open invitation to participate 
in the interesting meetings of the ‘Greco Microemulsions’ where I benefited from very 
stimulating discussions. 
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